Nonlinear systems

Nonlinearity is the rule not the exception.
A function is linear if $f(\alpha \cdot x+\beta \cdot y)=\alpha \cdot f(x)+\beta \cdot f(y)$ for every $x, y \in D_{f}$ and all scalars α and β.
$\beta=0 \Rightarrow f(\alpha x)=\alpha x \quad$ Proportionality represents a linear sytem.
$\alpha, \beta=0 \Rightarrow f(0)=0 \quad f(x)=a x+b$ is linear only if $b=0$ but loosely we think of it as linear.
$f(z)=z^{2}$ is a properly non-linear function since $(x+y)^{2} \neq x^{2}+y^{2}$.
The concept of linearity can be widened to operators acting on functions.
An operator \mathcal{L} is linear if $\mathcal{L}(\alpha \cdot f+\beta \cdot g)=\alpha \cdot \mathcal{L}(f)+\beta \cdot \mathcal{L}(g)$ for all functions f and g.
An equation $f(x)=0$ or functional equation $\mathcal{L}(f)=0$ is linear if the function f or operator \mathcal{L} is linear.
$E x: \mathcal{L}(f)=3 x \cdot \frac{d^{2} f}{d x^{2}}+5 \frac{d f}{d x}$ is linear in $f \quad \Rightarrow \quad 3 x y^{\prime \prime}+5 y^{\prime}=0$ is a linear differential equation
The linear property divides into two parts, additivity and homogeneity:

- Additivity: $\quad f(x+y)=f(x)+f(y)$
- Homogeneity: $f(\alpha x)=\alpha f(x)$

Additivity means that two solutions add up to a third solution: $f(x)=0, f(y)=0 \Rightarrow f(x+y)=0$

$$
\mathcal{L}(f)=0, \mathcal{L}(g)=0 \Rightarrow \mathcal{L}(f+g)=0
$$

$$
f(x)=0 \Rightarrow f(c x)=0
$$

$$
\mathcal{L}(f)=0 \Rightarrow \mathcal{L}(c f)=0
$$

All the solutions of a linear problem add up to a linear subspace, spanned by some set of basic solutions, a base.
All this is basic stuff of linear algebra and the study of vector spaces.
Equations with non-zero r.h.s. $f(x)=k$ and $\mathcal{L}(g)=h$ with linear f and \mathcal{L} are called homogenous if k and g are zero and inhomogeneous if they are non-zero.

The general solution becomes $x=x_{p}+x_{h}$ and $g=g_{p}+g_{h}$ where index p belongs to one particular solution and index h is part of the general solution to the homogenous equations $f\left(x_{h}\right)=0$ and $\mathcal{L}\left(g_{h}\right)=0$.

Additivity $f(x+y)=f(x)+f(y)$ for a real function $f: \mathbb{R} \rightarrow \mathbb{R}$ implies
homogeneity $f(\alpha x)=\alpha f(x)$ for every $\alpha \in \mathbb{Q}$ and for all $\alpha \in \mathbb{R}$ if f is continuous.
Exercise: Show that any additive function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is of the form $f(q)=c q$ for some constant $c \in \mathbb{Q}$.
Looking for solutions to the functional equation $f(x+y)=f(x)+f(y)$ [Cauchy's functional equation] among the non-continuous functions leads to some weird looking functions, very different from $f(x)=c x$. These strange functions can be derived by using the axiom of choice and non-constructive methods. A sign of their pathological nature is that they are dense in \mathbb{R}^{2},
every disk in the plane no matter how small contains a point from the graph $(x, f(x))$.
Systems that are based on linearity like $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ are well behaved, and a bit dull. Maybe not that dull, after all Maxwell's equations represent a linear system of differential equations.

A system that is not linear is called nonlinear, it opens up for all kinds of interesting things.

